1 背景
本文参考多方资料总结了一下当前在深度模型中常遇到的几种激活函数。
在神经网络中,激活函数主要有两个用途:
- 引入非线性
- 充分组合特征
其中非线性激活函数允许网络复制复杂的非线性行为。正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分的)。此外,复杂的激活函数也许产生一些梯度消失或爆炸的问题。因此,神经网络倾向于部署若干个特定的激活函数(identity、sigmoid、ReLU 及其变体)。
因此,神经网络中激励函数的作用通俗上讲就是将多个线性输入转换为非线性的关系。如果不使用激励函数的话,神经网络的每层都只是做线性变换,即使是多层输入叠加后也还是线性变换。通过激励函数引入非线性因素后,使神经网络的表达能力更强了。